小码哥的IT人生

Python NumPy 数组副本 vs 视图

Python基础 2022-06-06 12:55:11小码哥的IT人生shichen

NumPy 数组副本 vs 视图

副本和视图之间的区别

副本和数组视图之间的主要区别在于副本是一个新数组,而这个视图只是原始数组的视图。

副本拥有数据,对副本所做的任何更改都不会影响原始数组,对原始数组所做的任何更改也不会影响副本。

视图不拥有数据,对视图所做的任何更改都会影响原始数组,而对原始数组所做的任何更改都会影响视图。

副本:

示例代码:

进行复制,更改原始数组并显示两个数组:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
arr[0] = 61
print(arr)
print(x)

完整实例:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
arr[0] = 61
print(arr)
print(x)

该副本不应受到对原始数组所做更改的影响。

视图:

示例代码:

创建视图,更改原始数组,然后显示两个数组:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
arr[0] = 61
print(arr)
print(x)

完整实例:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
arr[0] = 61
print(arr)
print(x)

视图应该受到对原始数组所做更改的影响。

在视图中进行更改:

示例代码:

创建视图,更改视图,并显示两个数组:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
x[0] = 31
print(arr)
print(x)

完整实例:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
x[0] = 31
print(arr)
print(x)

原始数组应该受到对视图所做更改的影响。

检查数组是否拥有数据

如上所述,副本拥有数据,而视图不拥有数据,但是我们如何检查呢?

每个 NumPy 数组都有一个属性 base,如果该数组拥有数据,则这个 base 属性返回 None

否则,base 属性将引用原始对象。

示例代码:

打印 base 属性的值以检查数组是否拥有自己的数据:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
y = arr.view()
print(x.base)
print(y.base)

完整实例:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
y = arr.view()
print(x.base)
print(y.base)

副本返回 None

视图返回原始数组。

版权所有 © 小码哥的IT人生
Copyright © phpcodeweb All Rights Reserved
ICP备案号:苏ICP备17019232号-2  

苏公网安备 32030202000762号

© 2021-2024